de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Asymptotics of the Teichmüller harmonic map flow

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons61163

Rupflin,  Melanie
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1209.3783
(Preprint), 270KB

AdvMath244_874.pdf
(beliebiger Volltext), 263KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rupflin, M., Topping, P. M., & Zhu, M. (2013). Asymptotics of the Teichmüller harmonic map flow. Advances in mathematics, 244, 874-893. doi:http://dx.doi.org/10.1016/j.aim.2013.05.021.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-7C83-E
Zusammenfassung
The Teichm\"uller harmonic map flow, introduced in [9], evolves both a map from a closed Riemann surface to an arbitrary compact Riemannian manifold, and a constant curvature metric on the domain, in order to reduce its harmonic map energy as quickly as possible. In this paper, we develop the geometric analysis of holomorphic quadratic differentials in order to explain what happens in the case that the domain metric of the flow degenerates at infinite time. We obtain a branched minimal immersion from the degenerate domain.