de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Design of robust flow processing networks with time-programmed responses

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21692

Kaluza,  Pablo F.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21881

Mikhailov,  Alexander S.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaluza, P. F., & Mikhailov, A. S. (2012). Design of robust flow processing networks with time-programmed responses. European Physical Journal B, 85(4): 129. doi:10.1140/epjb/e2012-20433-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-7836-F
Zusammenfassung
Can artificially designed networks reach the levels of robustness against local damage which are comparable with those of the biochemical networks of a living cell? We consider a simple model where the flow applied to an input node propagates through the network and arrives at different times to the output nodes, thus generating a pattern of coordinated responses. By using evolutionary optimization algorithms, functional networks – with required time-programmed responses – were constructed. Then, continuing the evolution, such networks were additionally optimized for robustness against deletion of individual nodes or links. In this manner, large ensembles of functional networks with different kinds of robustness were obtained, making statistical investigations and comparison of their structural properties possible. We have found that, generally, different architectures are needed for various kinds of robustness. The differences are statistically revealed, for example, in the Laplacian spectra of the respective graphs. On the other hand, motif distributions of robust networks do not differ from those of the merely functional networks; they are found to belong to the first Alon superfamily, the same as that of the gene transcription networks of single-cell organisms.