de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On the validity of the adiabatic approximation in compact binary inspirals

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4562

Pannarale,  F.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1205.7006
(Preprint), 4KB

PRD86_044032.pdf
(beliebiger Volltext), 372KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maselli, A., Gualtieri, L., Pannarale, F., & Ferrari, V. (2012). On the validity of the adiabatic approximation in compact binary inspirals. Physical Review D, 86: 044032. doi:10.1103/PhysRevD.86.044032.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-77FB-C
Zusammenfassung
Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.