de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure-based mutant stability predictions on proteins of unknown structure

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons32630

Dehouck,  Yves
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gonnelli, G., Rooman, M., & Dehouck, Y. (2012). Structure-based mutant stability predictions on proteins of unknown structure. Journal of Biotechnology, 161(3), 287-293. doi:10.1016/j.jbiotec.2012.06.020.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-77B7-4
Zusammenfassung
The ability to rapidly and accurately predict the effects of mutations on the physicochemical properties of proteins holds tremendous importance in the rational design of modified proteins for various types of industrial, environmental or pharmaceutical applications, as well as in elucidating the genetic background of complex diseases. In many cases, the absence of an experimentally resolved structure represents a major obstacle, since most currently available predictive software crucially depend on it. We investigate here the relevance of combining coarse-grained structure-based stability predictions with a simple comparative modeling procedure. Strikingly, our results show that the use of average to high quality structural models leads to virtually no loss in predictive power compared to the use of experimental structures. Even in the case of low quality models, the decrease in performance is quite limited and this combined approach remains markedly superior to other methods based exclusively on the analysis of sequence features.