de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DnaK Functions as a Central Hub in the E. coli Chaperone Network

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons77834

Calloni,  Giulia
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77857

Chen,  Taotao
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78629

Schermann,  Sonya M.
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77848

Chang,  Hung-chun
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78078

Hayer-Hartl,  Manajit
Hayer-Hartl, Manajit / Chaperonin-assisted Protein Folding, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78072

Hartl,  F. Ulrich
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Calloni, G., Chen, T., Schermann, S. M., Chang, H.-c., Genevaux, P., Agostini, F., et al. (2012). DnaK Functions as a Central Hub in the E. coli Chaperone Network. CELL REPORTS, 1(3), 251-264. doi:10.1016/j.celrep.2011.12.007.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-7775-9
Abstract
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least similar to 700 mostly cytosolic proteins, including similar to 180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.