Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Finite-size effects in strongly interacting Rydberg gases

MPG-Autoren
/persons/resource/persons37683

Gärttner,  Martin
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany;
ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany;

Heeg,  K. P.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

Evers,  J.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1205.4953
(Preprint), 242KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gärttner, M., Heeg, K. P., Gasenzer, T., & Evers, J. (2012). Finite-size effects in strongly interacting Rydberg gases. Physical Review A, 86(3): 033422, pp. 1-9. doi:10.1103/PhysRevA.86.033422.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-75E7-8
Zusammenfassung
The scaling of the number of Rydberg excitations in a laser-driven cloud of atoms with the interaction strength is found to be affected by the finite size of the system. The scaling predicted by a theoretical model is compared with results extracted from a numerical many-body simulation. We find that the numerically obtained scaling exponent in general does not agree with the analytical prediction. By individually testing the assumptions leading to the theoretical prediction using the results from the numerical analysis, we identify the origin of the deviations, and explain it as arising from the finite size of the system. Furthermore, finite-size effects in the pair correlation function g2 are predicted. Finally, in larger ensembles, we find that the theoretical predictions and the numerical results agree, provided that the system is sufficiently homogeneous.