de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Asymptotics of relative heat traces and determinants on open surfaces of finite area

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons59438

Aldana,  Clara Lucia
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1001.2033
(Preprint), 450KB

AoGAG44_169.pdf
(beliebiger Volltext), 477KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aldana, C. L. (2013). Asymptotics of relative heat traces and determinants on open surfaces of finite area. Annals of global analysis and geometry, 44(2), 169-216. doi:10.1007/s10455-012-9362-9.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-74B4-4
Zusammenfassung
The goal of this paper is to prove that on surfaces with asymptotically cusp ends the relative determinant of pairs of Laplace operators is well defined. We consider a surface with cusps (M,g) and a metric h on the surface that is a conformal transformation of the initial metric g. We prove the existence of the relative determinant of the pair $(\Delta_{h},\Delta_{g})$ under suitable conditions on the conformal factor. The core of the paper is the proof of the existence of an asymptotic expansion of the relative heat trace for small times. We find the decay of the conformal factor at infinity for which this asymptotic expansion exists and the relative determinant is defined. Following the paper by B. Osgood, R. Phillips and P. Sarnak about extremal of determinants on compact surfaces, we prove Polyakov's formula for the relative determinant and discuss the extremal problem inside a conformal class. We discuss necessary conditions for the existence of a maximizer.