de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Brovkin, V., Sitch, S., von Bloh, W., Claussen, M., Bauer, E., & Cramer, W. (2004). Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology, 10(8), 1253-1266. doi:10.1111/j.1365-2486.2004.00812.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-A8EB-A
Abstract
We assess the role of changing natural (volcanic, aerosol, insolation) and anthropogenic (CO2 emissions, land cover) forcings on the global climate system over the last 150 years using an earth system model of intermediate complexity, CLIMBER-2. We apply several datasets of historical land-use reconstructions: the cropland dataset by Ramankutty & Foley (1999) (R&F), the HYDE land cover dataset of Klein Goldewijk (2001), and the land-use emissions data from Houghton & Hackler (2002). Comparison between the simulated and observed temporal evolution of atmospheric CO2 and delta(13)CO(2) are used to evaluate these datasets. To check model uncertainty, CLIMBER-2 was coupled to the more complex Lund-Potsdam-Jena (LPJ) dynamic global vegetation model. In simulation with R&F dataset, biogeophysical mechanisms due to land cover changes tend to decrease global air temperature by 0.26degreesC, while biogeochemical mechanisms act to warm the climate by 0.18degreesC. The net effect on climate is negligible on a global scale, but pronounced over the land in the temperate and high northern latitudes where a cooling due to an increase in land surface albedo offsets the warming due to land-use CO2 emissions. Land cover changes led to estimated increases in atmospheric CO2 of between 22 and 43 ppmv. Over the entire period 1800-2000, simulated delta(13)CO(2) with HYDE compares most favourably with ice core during 1850-1950 and Cape Grim data, indicating preference of earlier land clearance in HYDE over R&F. In relative terms, land cover forcing corresponds to 25-49% of the observed growth in atmospheric CO2. This contribution declined from 36-60% during 1850-1960 to 4-35% during 1960-2000. CLIMBER-2-LPJ simulates the land cover contribution to atmospheric CO2 growth to decrease from 68% during 1900-1960 to 12% in the 1980s. Overall, our simulations show a decline in the relative role of land cover changes for atmospheric CO2 increase during the last 150 years.