de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Robust identification of global greening phase patterns from remote sensing vegetation products

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons37243

Loew,  Alexander
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
CRG Terrestrial Remote Sensing, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons37304

Reick,  Christian H.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dahlke, C., Loew, A., & Reick, C. H. (2012). Robust identification of global greening phase patterns from remote sensing vegetation products. Journal of Climate, 25, 8289-8307. doi:10.1175/JCLI-D-11-00319.1.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8E19-3
Zusammenfassung
The fraction of absorbed photosynthetically active radiation (fAPAR) is an essential diagnostic variable to investigate the temporal and spatial dynamics of the terrestrial biosphere. The present study provides a new method to assess global vegetation greening phase dynamics, derived from fAPAR time series from four different remote sensing products. A robust algorithm is developed to detect intra-annual greening phase patterns and derive seasonality patterns of vegetation dynamics at the global scale. The comparison of four independent remote sensing datasets shows significantly consistent global spatiotemporal patterns at the 95% confidence level. Regions where the remote sensing datasets show consistent results, as well as regions where at least one of the used remote sensing datasets deviates, can be identified. The derived global greening phase dataset and analysis method provides a solid framework for the evaluation of global vegetation models.