de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Method development and validation for the analysis of a new anti-cancer infusion solution via HPLC

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50202

Herwig,  Ralf
Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Donnarumma, F., Schober, M., Greilberger, J., Matzi, V., Lindenmann, J., Maier, A., et al. (2011). Method development and validation for the analysis of a new anti-cancer infusion solution via HPLC. Journal of Separation Science, 34(2), 135-41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21246718.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8E12-2
Zusammenfassung
A fast and simple HPLC method has been developed and validated for the quantification of a completely new anti-cancer drug during the manufacturing process. The combination of four compounds including alpha-ketoglutaric acid, hydroxymethylfurfural, N-acetyl-L-methionine and N-acetyl-L-selenomethionine, administered intravenously, is still in test phase but has already shown promising results in cancer therapy. HPLC separation was achieved on an RP-18 column with a gradient system. However, the highly different concentrations of the compounds required a variation in the detection wavelength within one run. In order to produce a chromatogram where peaks were comparable on a similar range scale, detection at absorption maxima for the two most concentrated components was avoided. After optimization of the gradient program it was possible to detect all four substances within 14 min in spite of their strongly different chemical structure. The method developed was validated for accuracy, repeatability, reproducibility and robustness in relation to temperature and pH of buffer. Linearity as well as the limit of detection and quantification were determined. This HPLC method was found to be precise, accurate and reproducible and can be easily used for in-line process control during the manufacture of the anti-tumour infusion solution.