de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Variance stabilization and robust normalization for microarray gene expression data

MPG-Autoren

von Heydebreck,  A.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50470

Poustka,  A.
Evolution and Development (Albert Poustka), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  M.
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

von Heydebreck, A., Huber, W., Poustka, A., & Vingron, M. (2002). Variance stabilization and robust normalization for microarray gene expression data. In W. Härdle, & B. Rönz (Eds.), Proceedings in Computational Statistics (pp. 623-628). Heidelberg: Physika Verlag.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8CB8-F
Zusammenfassung
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of di erential gene expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a di erence statistic 4h whose variance is approximately constant along the intensity range. The parametric form h(x) = arsinh(a + bx) is derived from a model of the variance-versus-mean dependence for microarray intensity data, using the method of variance stabilizing transformations. The parameters of h together with those of the calibration between experiments are estimated with a robust variant of maximum-likelihood estimation.