de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phage P4 origin-binding domain structure reveals a mechanism for regulation of DNA-binding activity by homo- and heterodimerization of winged helix proteins

MPS-Authors

Ziegelin,  Günter
Max Planck Society;

Lanka,  Erich
Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Yeo, H.-J., Ziegelin, G., Korolev, S., Calendar, R., Lanka, E., & Waksman, G. (2002). Phage P4 origin-binding domain structure reveals a mechanism for regulation of DNA-binding activity by homo- and heterodimerization of winged helix proteins. Molecular Microbiology, 43(4), 855-867.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8C28-2
Abstract
The origin-binding domain of the gp protein of phage P4 (P4-OBD) mediates origin recognition and regulation of gp activity by the protein Cnr. We have determined the crystal structure of P4-OBD at 2.95 Å resolution. The structure of P4-OBD is that of a dimer with pseudo twofold symmetry. Each subunit has a winged helix topology with a unique structure among initiator proteins. The only structural homologue of the P4-OBD subunit is the DNA-binding domain of the eukaryotic transcriptional activator Rfx1. Based on this structural alignment, a model for origin recognition by the P4-OBD dimer is suggested. P4-OBD mutations that interfere with Cnr binding locate to the dimer interface, indicating that Cnr acts by disrupting the gp dimer. P4-OBD dimerization is mediated by helices 1 and 3 in both subunits, a mode of winged helix protein dimerization that is reminiscent of that of the eukaryotic transcription factors E2F and DP. This, in turn, suggests that Cnr is also a winged helix protein, a possibility that is supported by previously unreported sequence homologies between Cnr and Rfx1 and homology modelling. Hence, in a mechanism that appears to be conserved from phage to man, the DNA-binding activity of winged helix proteins can be regulated by other winged helix proteins via the versatile use of the winged helix motif as a homo- or heterodimerization scaffold.