English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The tetracycline resistance protein Tet() perturbs the conformation of the ribosomal decoding centre

MPS-Authors
/persons/resource/persons50126

Connell,  Sean R.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50573

Stelzl,  Ulrich
Molecular Interaction Networks (Ulrich Stelzl), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50143

Einfeldt,  Edda
Mechanisms of Transcriptional Regulation (Sebastiaan H. Meijsing), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50444

Nierhaus,  Knud H.
Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Connell, S. R., Trieber, C. A., Stelzl, U., Einfeldt, E., Taylor, D. E., & Nierhaus, K. H. (2002). The tetracycline resistance protein Tet() perturbs the conformation of the ribosomal decoding centre. Molecular Microbiology, 45(6), 1463-1472.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8BA5-5
Abstract
Tet() is an elongation factor-like protein found in clinical isolates of Campylobacter jejuni that confers resistance to the protein-synthesis inhibitor tetracycline. Tet() interacts with the 70S ribosome and promotes the release of bound tetracycline, however, as shown here, it does not form the same functional interaction with the 30S subunit. Chemical probing demonstrates that Tet() changes the reactivity of the 16S rRNA to dimethyl sulphate (DMS). These changes cluster within the decoding site, where C1214 is protected and A1408 is enhanced to DMS reactivity. C1214 is close to, but does not overlap, the primary tetracycline-binding site, whereas A1408 is in a region distinct from the Tet() binding site visualized by cryo-EM, indicating that Tet() induces long-range rearrangements that may mediate tetracycline resistance. Tetracycline enhances C1054 to DMS modification but this enhancement is inhibited in the presence of Tet() unlike the tetracycline-dependent protection of A892 which is unaffected by Tet(). C1054 is part of the primary binding site of tetracycline and A892 is part of the secondary binding site. Therefore, the results for the first time demonstrate that the primary tetracycline binding site is correlated with tetracycline's inhibitory effect on protein synthesis.