de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Toward optimized antibody microarrays: a comparison of current microarray support materials

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50069

Angenend,  Philipp
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50167

Glökler,  Jörn
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Murphy,  Derek
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Cahil,  Dolores J.
Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Angenend, P., Glökler, J., Murphy, D., Lehrach, H., & Cahil, D. J. (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Analytical Biochemistry, 309(2), 253-60.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8B8D-C
Zusammenfassung
With the advent of protein and antibody microarray technology several different coatings and protocols have been published, which may be broadly divided into two types: gel-coated surfaces and plain non-gel-coated glass or plastic surfaces, some with chemical groups attached. We have screened 11 different array surfaces of both types and compared them with respect to their detection limit, inter- and intrachip variation, and storage characteristics. Five different antibodies were immobilized onto each type of microarray support, with total protein concentrations ranging from 40 fmol to 25 amol per spot. From these results, it was seen that some antibodies were more suited for use on antibody arrays. All measurements were performed in quadruplicate, and the results revealed high signal uniformity and reproducibility of most plain glass and plastic slides. Lower detection limits were obtained with polyacrylamide-coated slides, making them more suitable for the detection of very low concentrations of antigen. All microarray coatings could be stored for a period of 8 weeks; however, improved results were seen after 2 weeks of storage. In conclusion, the results indicate the need to test each antibody to be used on an antibody array and to select the microarray coating based on experimental requirements.