de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Weighted sequence graphs: boosting iterated dynamic programming using locally suboptimal solutions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schwikowski, B., & Vingron, M. (2003). Weighted sequence graphs: boosting iterated dynamic programming using locally suboptimal solutions. Discrete Applied Mathematics, 127(1), 95-117. doi:10.1016/S0166-218X(02)00288-3.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8A73-C
Zusammenfassung
We present a novel technique for improving a fundamental aspect of iterated dynamic programming procedures on sequences, such as progressive sequence alignment. Instead of relying on the unrealistic assumption that each iteration can be performed accurately without including information from other sequences, our technique employs the combinatorial data structure of weighted sequence graphs to represent an exponential number of optimal and suboptimal sequences. The usual dynamic programming algorithm on linear sequences can be generalized to weighted sequence graphs, and therefore allows to align sequence graphs instead of individual sequences in subsequent stages. Thus, locally suboptimal, but globally correct solutions can for the first time be identified through iterated sequence alignment. We demonstrate the utility of our technique by applying it to the benchmark alignment problem of Sankoff et al. (J. Mol. Evol. 7 (1976) 133). Although a recent effort could improve on the original solution from 1976 slightly, our technique leads to even more significant improvements.