de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring potential target genes of signaling pathways by predicting conserved transcription factor binding sites

MPG-Autoren

Dieterich,  Christoph
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50202

Herwig,  Ralf
Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dieterich, C., Herwig, R., & Vingron, M. (2003). Exploring potential target genes of signaling pathways by predicting conserved transcription factor binding sites. Bioinformatics, 19(Suppl. 2), ii50-ii56.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8A2D-E
Zusammenfassung
Many cellular signaling pathways induce gene expression by activating specific transcription factor complexes. Conventional approaches to the prediction of transcription factor binding sites lead to a notoriously high number of false discoveries. To alleviate this problem, we consider only binding sites that are conserved in man-mouse genomic sequence comparisons. We employ two alternative methods for predicting binding sites: exact matches to validated binding site sequences and weight matrix scans. We then ask the question whether there is a characteristic association between a transcription factor or set thereof to a particular group of genes. Our approach is tested on genes, which are induced in dendritic cells in response to the cells’ exposure to LPS. We chose this example because the underlying signaling pathways are well understood. We demonstrate the benefit of conserved predicted binding sites in interpreting the LPS experiment. Additionally, we find that both methods for the prediction of conserved binding sites complement one another. Finally, our results suggest a distinct role for SRF in the context of LPS-induced gene expression.