de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The mechanism of regulation of bacteriophage lambda p(R) promoter activity by Escherichia coli DnaA protein

MPG-Autoren

Majka,  Jerzy
Max Planck Society;

Messer,  Walter
Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Glinkowska, M., Majka, J., Messer, W., & Wegrzyn, G. (2003). The mechanism of regulation of bacteriophage lambda p(R) promoter activity by Escherichia coli DnaA protein. Journal of Biological Chemistry, 278(25), 22250-22256. doi:10.1074/jbc.M212492200.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8A27-9
Zusammenfassung
Apart from its function as an initiator of DNA replication, the Escherichia coli DnaA protein is also a specific transcription factor. It activates and represses a number of promoters. However, mechanisms of transcription stimulation by DnaA remained unknown. Bacteriophage pR promoter is one of the promoters activated by DnaA. It was reported previously that DnaA binds downstream of the pR promoter and perhaps interacts with the RNA polymerase subunit. Here we demonstrate that DnaA positively regulates transcription from pR by stimulation of two steps in transcription initiation: RNA polymerase binding to the promoter region and promoter escape. For this transcription activation, two weak DnaA boxes located downstream of pR are necessary and sufficient. Such a mechanism of transcription activation and location of the activator-binding sites relative to the transcription start point are unusual in prokaryotes. Changes in the distance between the transcription start point and the first DnaA box by 5 and 10 bp and alterations in the orientation of these boxes did not abolish the stimulation of transcription by DnaA, but the efficiency of the promoter activation was different for various mutations. It seems plausible that formation of higher order nucleoprotein structures, involving DNA looping, is necessary for effective stimulation of the pR promoter. At high concentrations, DnaA is a repressor of pR rather than an activator. This repression was found to be because of inhibition of RNA polymerase binding to the promoter region.