de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Demethylation of host-cell DNA at the site of avian retrovirus integration

MPS-Authors

Hajkova,  Petra
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50623

Walter,  Joern
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hejnar, J. r. Ä., Elleder, D., Hajkova, P., Walter, J., Blazkova, J., & Svoboda, J. (2003). Demethylation of host-cell DNA at the site of avian retrovirus integration. Biochemical and Biophysical Research Communications, 311(3), 641-648. doi:10.1016/j.bbrc.2003.10.035.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8967-0
Abstract
The transcriptional activity of an integrated retroviral copy strongly depends on the adjacent host-cell DNA at the site of integration. Transcribed DNA loci as well as cis-acting sequences like enhancers or CpG islands usually permit expression of nearby integrated proviruses. In contrast, proviruses residing close to cellular silencers tend to transcriptional silencing and CpG methylation. Little is known, however, about the influence of provirus integration on the target sequence in the host genome. Here, we report interesting features of a simplified Rous sarcoma virus integrated into a non-transcribed hypermethylated DNA sequence in the Syrian hamster genome. After integration, CpG methylation of this sequence has been lost almost completely and hypomethylated DNA permits proviral transcription and hamster cell transformation by the proviral v-src oncogene. This, however, is not a stable state, and non-transformed revertants bearing transcriptionally silenced proviruses segregate with a high rate. The provirus silencing is followed by DNA methylation of both provirus regulatory regions and adjacent cellular sequences. This CpG methylation is very dense and resistant to the demethylation effects of 5-aza-2′-deoxycytidine and/or trichostatin A. Our description exemplifies the capacity of retroviruses/retroviral vectors to overcome, at least transiently, negative position effects of DNA methylation at the site of integration.