de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genexpressionsanalyse komplexer klinischer Phänotypen mittels cDNS-Arrays - Gene Expression Profiling of Complex Clinical Phenotypes using cDNA-Arrays

MPS-Authors

von Heydebreck,  Anja
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50492

Sperling,  Silke
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Kaynak,  Bogac
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

von Heydebreck, A., Sperling, S., Kaynak, B., Lehrach, H., & Vingron, M. (2004). Genexpressionsanalyse komplexer klinischer Phänotypen mittels cDNS-Arrays - Gene Expression Profiling of Complex Clinical Phenotypes using cDNA-Arrays. it - Information Technology, 46(1), 26-30. doi:10.1524/itit.46.1.26.26507.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8910-3
Abstract
In a genome-wide gene expression study, normal and congenitally malformed human hearts were examined using cDNA arrays. Statistical and bioinformatic methods were used in order to identify tissue- and disease-specific gene expression profiles and to associate functional gene categories with specific phenotypes. In einer genomweiten Genexpressionsstudie wurden normale und fehlgebildete menschliche Herzen mittels cDNS-Arrays untersucht. Statistische und bioinformatische Methoden wurden benutzt, um gewebe- und krankheitsspezifische Genexpressionsmuster zu identifizieren und funktionelle Genkategorien mit bestimmten Phänotypen zu assoziieren.