de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A dedicated translation factor controls the synthesis of the global regulator Fis

MPS-Authors

Owens,  Róisín M.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50126

Connell,  Sean R.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50444

Nierhaus,  Knud H.
Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Owens, R. M., Pritchard, G., Skipp, P., Hodey, M., Connell, S. R., Nierhaus, K. H., et al. (2004). A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO Journal, 23(16), 3375-3385. doi:10.1038/sj.emboj.7600343.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-87F3-4
Abstract
BipA is a highly conserved protein with global regulatory properties in Escherichia coli. We show here that it functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of elongation factor G and has a GTPase activity that is sensitive to high GDP:GTP ratios and stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. We propose a model in which BipA destabilizes unusually strong interactions between the 5' untranslated region of fis mRNA and the ribosome. Since BipA spans phylogenetic domains, transcript-selective translational control for the ‘fast-track’ expression of specific mRNAs may have wider significance.