de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Molecular cytogenetic characterization of ring chromosome 15 in three unrelated patients

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50369

Kalscheuer,  Vera M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Tümer, Z., Harboe, T., Blennow, E., Kalscheuer, V. M., Tommerup, N., & Brøndum-Nielsen, K. (2004). Molecular cytogenetic characterization of ring chromosome 15 in three unrelated patients. American Journal of Medical Genetics, 130A(4), 340-344. doi:10.1002/ajmg.a.30035.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-87C4-E
Abstract
We report molecular cytogenetic characterization of ring chromosome 15 in three unrelated male patients with the karyotype 46,XY,r(15). One was a stillborn child with several malformations, and the other two cases showed pre- and postnatal growth retardation and developmental delay, common features for ring chromosome 15 syndrome. One of these patients also displayed clinical features resembling Prader-Willi syndrome (PWS). To delineate the extent of the deletion on chromosome 15, we have carried out fluorescence in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) mapping to the distal long arm of chromosome 15. The deletion breakpoints clustered within a 4.5-6.5 Mb region proximal to the 15q telomere. Two deletions involved the same known genes, while the largest deletion observed in the stillborn child involved three additional genes, including the COUP-TFII gene, which has been suggested to play a role in heart development. The heart malformations, which are observed in this patient, are thus likely to be due to hemizygosity/haploinsufficiency of the COUP-TFII gene. In all three patients, the insulin-like growth factor I receptor gene (IGF1R) gene was deleted supporting the association between IGF1R and growth retardation seen in ring chromosome 15 syndrome.