English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin

MPS-Authors

Schlünzen,  Frank
Max Planck Society;

/persons/resource/persons50160

Fucini,  Paola
Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schlünzen, F., Pyetan, E., Fucini, P., Yonath, A., & Harms, J. M. (2004). Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Molecular Microbiology, 54(5), 1287-1294. doi:10.1111/j.1365-2958.2004.04346.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8771-A
Abstract
Tiamulin, a prominent member of the pleuromutilin class of antibiotics, is a potent inhibitor of protein synthesis in bacteria. Up to now the effect of pleuromutilins on the ribosome has not been determined on a molecular level. The 3.5 Å structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin provides for the first time a detailed picture of its interactions with the 23S rRNA, thus explaining the molecular mechanism of the antimicrobial activity of the pleuromutilin class of antibiotics. Our results show that tiamulin is located within the peptidyl transferase center (PTC) of the 50S ribosomal subunit with its tricyclic mutilin core positioned in a tight pocket at the A-tRNA binding site. Also, the extension, which protrudes from its mutilin core, partially overlaps with the P-tRNA binding site. Thereby, tiamulin directly inhibits peptide bond formation. Comparison of the tiamulin binding site with other PTC targeting drugs, like chloramphenicol, clindamycin and streptogramins, may facilitate the design of modified or hybridized drugs that extend the applicability of this class of antibiotics.