de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Comparative analysis of cell cycle regulated genes in eukaryotes

MPG-Autoren

Dyczkowski,  Jerzy
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

IBSB05F017.pdf
(beliebiger Volltext), 299KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dyczkowski, J., & Vingron, M. (2005). Comparative analysis of cell cycle regulated genes in eukaryotes. Genome Informatics, 16(1), 125-131.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8726-3
Zusammenfassung
We compared microarray experiments on cell cycle of three model eukaryotes: budding and fission yeast and human cells. Only 112 orthologous groups were cyclic in the three model organisms. The common set of cyclic orthologs includes many taking part in the cell cycle progression, like cyclin B homologs, CDC5, SCH9, DSK2, ZPR1. Proteins involved in DNA replication included histones, some checkpoint kinases and some proteins regulating DNA damage and repair. Conserved cyclic proteins involved in cytokinesis included myosins and kinesins. Many groups of genes related to translation and other metabolic processes were also cyclic in all three organisms. This reflects rebuilding of cellular components after the replication and changes of metabolism during the cell cycle. Many genes important in cell cycle control are not cyclic or not conserved. This includes transcription factors implicated in the regulation of budding yeast cell cycle. The partially overlapping roles of regulatory proteins might allow the evolutionary substitution of components of cell cycle.