de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data

MPG-Autoren

Lottaz,  Claudio
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50564

Spang,  Rainer
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1971.pdf
(beliebiger Volltext), 365KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lottaz, C., & Spang, R. (2005). Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data. Bioinformatics, 21(9), 1971-1978. doi:10.1093/bioinformatics/bti292.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-870B-0
Zusammenfassung
Motivation: Today, the characterization of clinical phenotypes by gene-expression patterns is widely used in clinical research. If the investigated phenotype is complex from the molecular point of view, new challanges arise and these have not been adressed systematically. For instance, the same clinical phenotype can be caused by various molecular disorders, such that one observes different characteristic expression patterns in different patients. Results: In this paper we describe a novel algorithm called Structured Analysis of Microarrays (StAM), which accounts for molecular heterogeneity of complex clinical phenotypes. Our algorithm goes beyond established methodology in several aspects: in addition to the expression data, it exploits functional annotations from the Gene Ontology database to build biologically focussed classifiers. These are used to uncover potential molecular disease subentities and associate them to biological processes without compromising overall prediction accuracy.