de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Robustness and network evolution--an entropic principle

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50133

Demetrius,  Lloyd
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50420

Manke,  Thomas
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Demetrius, L., & Manke, T. (2005). Robustness and network evolution--an entropic principle. Physica A: Statistical and Theoretical Physics, 364(3-4), 682-696. doi:10.1016/j.physa.2004.07.011.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-86DB-4
Zusammenfassung
This article introduces the concept of network entropy as a characteristic measure of network topology. We provide computational and analytical support for the hypothesis that network entropy is a quantitative measure of robustness. We formulate an evolutionary model based on entropy as a selective criterion and show that (a) it predicts the direction of changes in network structure over evolutionary time and (b) it accounts for the high degree of robustness and the heterogenous connectivity distribution, which is often observed in biological and technological networks. Our model is based on Darwinian principles of evolution and preferentially selects networks according to a global fitness criterion, rather than local preferences in classical models of network growth. We predict that the evolutionarily stable states of evolved networks will be characterized by extremal values of network entropy.