de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predicting physiological concentrations of metabolites from their molecular structure

MPS-Authors

Liebermeister,  Wolfram
Max Planck Society;

Locator
There are no locators available
Fulltext (public)

Liebermeister - JCB.pdf
(Any fulltext), 80KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Liebermeister, W. (2005). Predicting physiological concentrations of metabolites from their molecular structure. Journal of Computational Biology, 12(10), 1307-1315.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8551-F
Abstract
Physiological concentrations of metabolites can partly be explained by their molecular structure. We hypothesize that substances containing certain chemical groups show increased or decreased concentration in cells. We consider here, as chemical groups, local atomic configurations, describing an atom, its bonds, and its direct neighbor atoms. To test our hypothesis, we fitted a linear statistical model that relates experimentally determined logarithmic concentrations to feature vectors containing count numbers of the chemical groups. In order to determine chemical groups that have a clear effect on the concentration, we use a regularized (lasso) regression. In a dataset on 41 substances of central metabolism in different organisms, we found that the physical concentrations are increased by the occurrence of amino and hydroxyl groups, while aldehydes, ketones, and phosphates show decreased concentrations. The model explains about 22% of the variance of the logarithmic mean concentrations.