English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

MPS-Authors
/persons/resource/persons50321

Hu,  Yu-Hui
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50625

Warnatz,  Hans-Jörg
Human Chromosome 21 (Marie-Laure Yaspo), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Vanhecke,  Dominique
Max Planck Society;

/persons/resource/persons50151

Fiebitz,  Andrea
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50589

Thamm,  Sabine
Human Chromosome 21 (Marie-Laure Yaspo), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Kahlem,  Pascal
Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50655

Yaspo,  Marie-Laure
Human Chromosome 21 (Marie-Laure Yaspo), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50363

Janitz,  Michal
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Hu.pdf
(Any fulltext), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hu, Y.-H., Warnatz, H.-J., Vanhecke, D., Wagner, F., Fiebitz, A., Thamm, S., et al. (2006). Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics, 7, 155-155. doi:10.1186/1471-2164-7-155.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8413-3
Abstract
Background Trisomy of human chromosome 21 (Chr21) results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.