de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oligonucleotide fingerprinting of arrayed genomic DNA sequences using LNA-modified hybridization probes

MPS-Authors

Liu,  Jian-Ping
Max Planck Society;

Drungowski,  Mario
Max Planck Society;

Nyarsik,  Lajos
Max Planck Society;

Schwartz,  Regine
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50202

Herwig,  Ralf
Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50363

Janitz,  Michal
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, J.-P., Drungowski, M., Nyarsik, L., Schwartz, R., Lehrach, H., Herwig, R., et al. (2007). Oligonucleotide fingerprinting of arrayed genomic DNA sequences using LNA-modified hybridization probes. Combinatorial Chemistry & High Throughput Screening, 10(4), 269-276. doi:10.2174/138620707780636637.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-82B2-B
Abstract
Recently, we established a robust method for the detection of hybridization events using a DNA microarray deposited on a nanoporous membrane. Here, in a follow-up study, we demonstrate the performance of this approach on a larger set of LNA-modified oligoprobes and genomic DNA sequences. Twenty-six different LNA-modified 7-mer oligoprobes were hybridized to a set of 66 randomly selected human genomic DNA clones spotted on a nanoporous membrane slide. Subsequently, assay sensitivity analysis was performed using receiver operating characteristic (ROC) curves. Comparison of LNA-modified heptamers and DNA heptamers revealed that the LNA modification clearly improved sensitivity and specificity of hybridization experiment. Clustering analysis was applied in order to test practical performance of hybridization experiments with LNA-modified oligoprobes in recognizing similarity of genomic DNA sequences. Comparing the results with the theoretical sequence clusters, we conclude that the application of LNA-modified oligoprobes allows for reliable clustering of DNA sequences which reflects the underlying sequence homology. Our results show that LNA-modified oligoprobes can be used effectively to unravel sequence similarity of DNA sequences and thus, to characterize the content of unknown DNA libraries.