de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1.

MPG-Autoren

Wöhlbrand,  Lars
Max Planck Society;

Kallerhoff,  Birte
Max Planck Society;

Lange,  Daniela
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50488

Reinhardt,  Richard
High Throughput Technologies, Max Planck Institute for Molecular Genetics, Max Planck Society;

Rabus,  Ralf
Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wöhlbrand, L., Kallerhoff, B., Lange, D., Hufnagel, P., Thiermann, J., Reinhardt, R., et al. (2007). Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1. PROTEOMICS, 7(13), 2222-2239. doi:10.1002/pmic.200600987.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-81B9-3
Zusammenfassung
The denitrifying Aromatoleum aromaticum strain EbN1 utilizes a wide range of aromatic and nonaromatic compounds under anoxic and oxic conditions. The recently determined genome revealed corresponding degradation pathways and predicted a fine-tuned regulatory network. In this study, differential proteomics (2-D DIGE and MS) was used to define degradation pathway-specific subproteomes and to determine their growth condition dependent regulation. Differential protein profiles were determined for cultures adapted to growth under 22 different substrate and redox conditions. In total, 354 different proteins were identified, 199 of which displayed significantly changed abundances. These regulated proteins mainly represented enzymes of the different degradation pathways, and revealed different degrees of growth condition specific regulation. In case of three substrate conditions (e.g. phenylalanine, anoxic), proteins previously predicted to be involved in their degradation were apparently not involved (e.g. Pdh, phenylacetaldehyde dehydrogenase). Instead, previously not considered proteins were specifically increased in abundance (e.g. EbA5005, predicted aldehyde:ferredoxin oxidoreductase), shedding new light on the respective pathways. Moreover, strong evidence was obtained for thus far unpredicted degradation pathways of three hitherto unknown substrates (e.g. o-aminobenzoate, anoxic). Comparing all identified regulated and nonregulated proteins provided first insights into regulatory hierarchies of special degradation pathways versus general metabolism in strain EbN1.