English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of DNA on Microarrays

MPS-Authors

Kepper,  Pamela
Max Planck Society;

/persons/resource/persons50488

Reinhardt,  Richard
High Throughput Technologies, Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50130

Dahl,  Andreas
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50512

Sauer,  Sascha
Nutrigenomics and Gene Regulation (Sascha Sauer), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kepper, P., Reinhardt, R., Dahl, A., Lehrach, H., & Sauer, S. (2007). Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of DNA on Microarrays. Clinical Chemistry: International Journal of Molecular Diagnostics and Laboratory Medicine, 52(7), 1303-1310. doi:10.1373/clinchem.2006.067264.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-81AC-1
Abstract
Background: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is a powerful tool in biomolecule analysis with a wide range of application possibilities, including genotyping of single-base variations (also known as single-nucleotide polymorphisms, or SNPs) for candidate gene studies and diagnostic typing of DNA markers. We tested a method that does not require stringent purification of the nucleic acids and/or the use of modification chemistry before mass spectrometry analysis. Methods: We used an alternative direct analysis approach that allows MALDI analysis of crude DNA samples printed on microscope slides densely coated with primary amino groups that efficiently bind negatively charged DNA. After simple washing of the slides, we applied MALDI matrix and used a conventional MALDI mass spectrometer to detect DNA products. Results: We analyzed crude oligonucleotide samples and performed automated genotyping of single-base variations in 72 DNA samples. Conclusion: This procedure offers an operational short-cut compared with standard MALDI procedures for preparation of oligonucleotides, including purification, and thus is an efficient tool for genotyping applications, particularly those requiring accurate, flexible, and rapid data generation and medium throughput.