English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo.

MPS-Authors
/persons/resource/persons50578

Stricker,  Sigmar
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reijntjes, S., Stricker, S., & Mankoo, B. S. (2007). A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo. International Journal of Developmental Biology (Ijdb), 51(8), 753-759. doi:10.1387/ijdb.072332sr.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8195-4
Abstract
We have examined the expression pattern of the avian Meox1 homeobox gene during early development and up to late limb bud stages. Its expression pattern indicates that it is involved in somite specification and differentiation. The domains of expression are similar but different to those of Meox2. Meox1 is expressed from stage 6 in the pre-somitic mesoderm and as development proceeds, in the tail bud, the dermomyotome of the rostral somites and in the dermomyotome and sclerotome of the caudal somites, the lateral rectus muscle, truncus arteriosus of the heart and the limb buds. Unlike Meox1, Meox2 is not expressed in the pre-somitic mesoderm, but is expressed first in somites formed from stage 11 onwards. In the developing limb, both genes are expressed in the dorsal and ventral limb mesoderm in adjacent domains with a small region of overlap. In the limb bud, Meox1 is co-expressed with Meox2 but neither Meox gene is co-expressed with MyoD. These expression patterns suggest that these two genes have overlapping and distinct functions in development.