de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Alternative polyadenylation signals and promoters act in concert to control tissue-specific expression of the Opitz Syndrome gene MID1.

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50644

Winter,  Jennifer
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Kunath,  Melanie
Max Planck Society;

Roepcke,  Stefan
Max Planck Society;

Krause,  Sven
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50526

Schneider,  Rainer
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50544

Schweiger,  Susann
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Winter, J., Kunath, M., Roepcke, S., Krause, S., Schneider, R., & Schweiger, S. (2007). Alternative polyadenylation signals and promoters act in concert to control tissue-specific expression of the Opitz Syndrome gene MID1. BMC Molecular Biology [Elektronische Ressource], 8(1), 105-133. doi:10.1186/1471-2199-8-105.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-8120-C
Zusammenfassung
Background Mutations in the X-linked MID1 gene are responsible for Opitz G/BBB syndrome, a malformation disorder of developing midline structures. Previous Northern blot analyses revealed the existence of at least three MID1 transcripts of differing lengths. Results Here we show that alternative polyadenylation generates the size differences observed in the Northern blot analyses. Analysis of EST data together with additional Northern blot analyses proved tissue-specific usage of the alternative polyadenylation sites. Bioinformatic characterization of the different 3'UTRs of MID1 revealed numerous RNA-protein interaction motifs, several of which turned out to be conserved between different species. Furthermore, our data suggest that mRNA termination at different polyadenylation sites is predetermined by the choice of alternative 5'UTRs and promoters of the MID1 gene, a mechanism that efficiently allows synergistic function of 5' and 3'UTRs. Conclusions MID1 expression is tightly regulated through concerted action of alternative promoters and alternative polyadenylation signals both during embryonic development and in the adult.