de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Natural similarity measures between position frequency matrices with an application to clustering

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50459

Pape,  Utz J.
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50480

Rahmann,  Sven
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

350.pdf
(beliebiger Volltext), 216KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pape, U. J., Rahmann, S., & Vingron, M. (2008). Natural similarity measures between position frequency matrices with an application to clustering. Bioinformatics, 24(3), 350-357. Retrieved from http://bioinformatics.oxfordjournals.org/cgi/reprint/24/3/350.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-80A3-C
Zusammenfassung
Motivation: Transcription factors (TFs) play a key role in gene regulation by binding to target sequences. In silico prediction of potential binding of a TF to a binding site is a well-studied problem in computational biology. The binding sites for one TF are represented by a position frequency matrix (PFM). The discovery of new PFMs requires the comparison to known PFMs to avoid redundancies. In general, two PFMs are similar if they occur at overlapping positions under a null model. Still, most existing methods compute similarity according to probabilistic distances of the PFMs. Here we propose a natural similarity measure based on the asymptotic covariance between the number of PFM hits incorporating both strands. Furthermore, we introduce a second measure based on the same idea to cluster a set of the Jaspar PFMs. Results: We show that the asymptotic covariance can be efficiently computed by a two dimensional convolution of the score distributions. The asymptotic covariance approach shows strong correlation with simulated data. It outperforms three alternative methods. The Jaspar clustering yields distinct groups of TFs of the same class. Furthermore, a representative PFM is given for each class. In contrast to most other clustering methods, PFMs with low similarity automatically remain singletons. Availability: A website to compute the similarity and to perform clustering, the source code and Supplementary Material are available at http://mosta.molgen.mpg.de