de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50386

Klopocki,  E.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50606

Ullmann,  Reinhardt
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50437

Mundlos,  Stefan
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Klopocki, E., Ott, C.-E., Benatar, N., Ullmann, R., Mundlos, S., & Lehmann, K. (2008). A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. Journal of Medical Gentics, 45(6), 370-375. doi:10.1136/jmg.2007.055699.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-809A-2
Abstract
BACKGROUND: Sonic hedgehog (SHH) plays an important role in defining the anterior-posterior axis in the developing limbs. A highly conserved non-coding sequence about approximately 1 Mb upstream from the sonic hedgehog gene (SHH) was shown to be a long range regulator for SHH expression in the limb bud. Point mutations within this non-coding regulatory region designated ZRS lead to ectopic expression of Shh in the anterior margin of the limb bud, as shown in mice, and cause the human triphalangeal thumb and polysyndactyly (TPT-PS) phenotype. Even though this association is well established, its molecular mechanism remains unclear. METHODS AND RESULTS: We investigated a large pedigree with variable TPT-PS. A single nucleotide exchange within the SHH limb regulator sequence was excluded, but locus specific microsatellite marker analyses confirmed a linkage to this region. Subsequently, array comparative genomic hybridisation (array CGH) was carried out using a submegabase whole human genome tiling path bacterial artificial chromosome (BAC) array revealing a microduplication in 7q36.3 in affected individuals. A duplicated region of 588,819 bp comprising the ZRS was identified by quantitative real-time polymerase chain reaction (qPCR) and direct sequencing. CONCLUSION: A novel microduplication in 7q36.3 results in a similar TPT-PS phenotype as caused by single nucleotide alterations in the ZRS, the limb specific SHH regulatory element. Duplications can be added to the growing list of mechanisms that cause abnormalities of long range transcriptional control.