de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detecting hierarchical structure in molecular characteristics of disease using transitive approximations of directed graphs

MPG-Autoren

Jentsch,  Marcel
Max Planck Society;

Kostka,  Dennis
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50564

Spang,  Rainer
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

btn056v1.pdf
(beliebiger Volltext), 269KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jacob, J., Jentsch, M., Kostka, D., Bentink, S., & Spang, R. (2008). Detecting hierarchical structure in molecular characteristics of disease using transitive approximations of directed graphs. Bioinformatics, 24(7), 995-1001. doi:10.1093/bioinformatics/btn056.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-806A-0
Zusammenfassung
Motivation: Molecular diagnostics aims at classifying diseases into clinically relevant sub-entities based on molecular characteristics. Typically, the entities are split into subgroups, which might contain several variants yielding a hierarchical model of the disease. Recent years have introduced a plethora of new molecular screening technologies to molecular diagnostics. As a result molecular profiles of patients became complex and the classification task more difficult. Results: We present a novel tool for detecting hierarchical structure in binary datasets. We aim for identifying molecular characteristics, which are stochastically implying other characteristics. The final hierarchical structure is encoded in a directed transitive graph where nodes represent molecular characteristics and a directed edge from a node A to a node B denotes that almost all cases with characteristic B also display characteristic A. Naturally, these graphs need to be transitive. In the core of our modeling approach lies the problem of calculating good transitive approximations of given directed but not necessarily transitive graphs. By good transitive approximation we understand transitive graphs, which differ from the reference graph in only a small number of edges. It is known that the problem of finding optimal transitive approximation is NP-complete. Here we develop an efficient heuristic for generating good transitive approximations. We evaluate the computational efficiency of the algorithm in simulations, and demonstrate its use in the context of a large genome-wide study on mature aggressive lymphomas.