English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia

MPS-Authors
/persons/resource/persons50123

Chen,  Wei
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Sari,  Murat
Max Planck Society;

/persons/resource/persons50145

Erdogan,  Fikret
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50501

Ropers,  Hans-Hilger
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50606

Ullmann,  Reinhard
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

458.pdf
(Any fulltext), 360KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kirov, G., Gumus, D., Chen, W., Norton, N., Georgieva, L., Sari, M., et al. (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 17(3), 458-465. doi:10.1093/hmg/ddm323.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8041-A
Abstract
Copy number variations (CNVs) account for a substantial proportion of human genomic variation, and have been shown to cause neurodevelopmental disorders. We sought to determine the relevance of CNVs to the aetiology of schizophrenia (SZ). Whole-genome, high-resolution, tiling path BAC array comparative genomic hybridization (array CGH) was employed to test DNA from 93 individuals with DSM-IV SZ. Common DNA copy number changes that are unlikely to be directly pathogenic in SZ were filtered out by comparison to a reference dataset of 372 control individuals analyzed in our laboratory, and a screen against the Database of Genomic Variants. The remaining aberrations were validated with Affymetrix 250K SNP arrays or 244K Agilent oligo-arrays and tested for inheritance from the parents. A total of 13 aberrations satisfied our criteria. Two of them are very likely to be pathogenic. The first one is a deletion at 2p16.3 that was present in an affected sibling and disrupts NRXN1. The second one is a de novo duplication at 15q13.1 spanning APBA2. The proteins of these two genes interact directly and play a role in synaptic development and function. Both genes have been affected by CNVs in patients with autism and mental retardation, but neither has been previously implicated in SZ.