English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparative 3’UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer cell lines

MPS-Authors
/persons/resource/persons50644

Winter,  Jennifer
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Roepcke,  Stefan
Max Planck Society;

Krause,  Sven
Max Planck Society;

/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50544

Schweiger,  Susann
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Winter, J., Roepcke, S., Krause, S., Müller, E.-C., Otto, A., Vingron, M., et al. (2008). Comparative 3’UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer cell lines. PLoS One, 3(7), e2780-e2780. doi:10.1371/journal.pone.0002780.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7F78-8
Abstract
Eph receptors are the largest family of receptor tyrosine kinases. Together with their ligands, the ephrins, they fulfill multiple biological functions. Aberrant expression of Ephs/ephrins leading to increased Eph receptor to ephrin ligand ratios is a critical factor in tumorigenesis, indicating that tight regulation of Eph and ephrin expression is essential for normal cell behavior. The 3'-untranslated regions (3'UTRs) of transcripts play an important yet widely underappreciated role in the control of protein expression. Based on the assumption that paralogues of large gene families might exhibit a conserved organization of regulatory elements in their 3'UTRs we applied a novel bioinformatics/molecular biology approach to the 3'UTR sequences of Eph/ephrin transcripts. We identified clusters of motifs consisting of cytoplasmic polyadenylation elements (CPEs), AU-rich elements (AREs) and HuR binding sites. These clusters bind multiple RNA-stabilizing and destabilizing factors, including HuR. Surprisingly, despite its widely accepted role as an mRNA-stabilizing protein, we further show that binding of HuR to these clusters actually destabilizes Eph/ephrin transcripts in tumor cell lines. Consequently, knockdown of HuR greatly modulates expression of multiple Ephs/ephrins at both the mRNA and protein levels. Together our studies suggest that overexpression of HuR as found in many progressive tumors could be causative for disarranged Eph receptor to ephrin ligand ratios leading to a higher degree of tissue invasiveness.