de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Fast and adaptive variable order Markov chain construction

MPG-Autoren

Schulz,  Marcel H.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50486

Rausch,  Tobias
IMPRS for Computational Biology and Scientific Computing - IMPRS-CBSC (Kirsten Kelleher), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schulz, M. H., Weese, D., Rausch, T., Döring, A., Reinert, K., & Vingron, M. (2008). Fast and adaptive variable order Markov chain construction. In K. A. Crandall, & J. Lagergren (Eds.), Algorithms in Bioinformatics (pp. 306-317). Berlin / Heidelberg: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-7F0E-5
Zusammenfassung
Variable order Markov chains (VOMCs) are a flexible class of models that extend the well-known Markov chains. They have been applied to a variety of problems in computational biology, e.g. protein family classification. A linear time and space construction algorithm has been published in 2000 by Apostolico and Bejerano. However, neither a report of the actual running time nor an implementation of it have been published since. In this paper we use the lazy suffix tree and the enhanced suffix array to improve upon the algorithm of Apostolico and Bejerano. We introduce a new software which is orders of magnitude faster than current tools for building VOMCs, and is suitable for large scale sequence analysis.