de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Proceedings

Comparative study on normalization procedures for cluster analysis of gene expression datasets

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50127

Costa,  Ivan G.
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50523

Schliep,  Alexander
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

de Souto, M. C. P., de Araujo, D. S. A., Costa, I. G., Soares, R. G. F., Ludermir, T. B., & Schliep, A. (2008). Comparative study on normalization procedures for cluster analysis of gene expression datasets. Hong Kong: International Joint Conference on Neural Networks, Hong Kong), (2008).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-7F03-C
Abstract
Normalization before clustering is often needed for proximity indices, such as Euclidian distance, which are sensitive to differences in the magnitude or scales of the attributes. The goal is to equalize the size or magnitude and the variability of these features. This can also be seen as a way to adjust the relative weighting of the attributes. In this context, we present a first large scale data driven comparative study of three normalization procedures applied to cancer gene expression data. The results are presented in terms of the recovering of the true clusterstructure as found by five different clustering algorithms.