de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.

MPS-Authors

Musat,  Florin
Max Planck Society;

Galushko,  Alexander
Max Planck Society;

Jacob,  Jacob
Max Planck Society;

Widdel,  Friedrich
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50397

Kube,  Michael
High Throughput Technologies, Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50488

Reinhardt,  Richard
High Throughput Technologies, Max Planck Institute for Molecular Genetics, Max Planck Society;

Rabus,  Ralf
Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Musat, F., Galushko, A., Jacob, J., Widdel, F., Kube, M., Reinhardt, R., et al. (2009). Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environmental Microbiology, 11(1), 209-219. doi:10.1111/j.1462-2920.2008.01756.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-7E47-B
Abstract
The anaerobic biodegradation of naphthalene, an aromatic hydrocarbon in tar and petroleum, has been repeatedly observed in environments but scarcely in pure cultures. To further explore the relationships and physiology of anaerobic naphthalene-degrading microorganisms, sulfate-reducing bacteria (SRB) were enriched from a Mediterranean sediment with added naphthalene. Two strains (NaphS3, NaphS6) with oval cells were isolated which showed naphthalene-dependent sulfate reduction. According to 16S rRNA gene sequences, both strains were Deltaproteobacteria and closely related to each other and to a previously described naphthalene-degrading sulfate-reducing strain (NaphS2) from a North Sea habitat. Other close relatives were SRB able to degrade alkylbenzenes, and phylotypes enriched anaerobically with benzene. If in adaptation experiments the three naphthalene-grown strains were exposed to 2-methylnaphthalene, this compound was utilized after a pronounced lag phase, indicating that naphthalene did not induce the capacity for 2-methylnaphthalene degradation. Comparative denaturing gel electrophoresis of cells grown with naphthalene or 2-methylnaphthalene revealed a striking protein band which was only present upon growth with the latter substrate. Peptide sequences from this band perfectly matched those of a protein predicted from genomic libraries of the strains. Sequence similarity (50% identity) of the predicted protein to the large subunit of the toluene-activating enzyme (benzylsuccinate synthase) from other anaerobic bacteria indicated that the detected protein is part of an analogous 2-methylnaphthalene-activating enzyme. The absence of this protein in naphthalene-grown cells together with the adaptation experiments as well as isotopic metabolite differentiation upon growth with a mixture of d8-naphthalene and unlabelled 2-methylnaphthalene suggest that the marine strains do not metabolize naphthalene by initial methylation via 2-methylnaphthalene, a previously suggested mechanism. The inability to utilize 1-naphthol or 2-naphthol also excludes these compounds as free intermediates. Results leave open the possibility of naphthalene carboxylation, another previously suggested activation mechanism.