English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis.

MPS-Authors
/persons/resource/persons50543

Schweiger,  Michal R.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50378

Kerick,  Martin
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  Bernd
Sequencing, Max Planck Institute for Molecular Genetics, Max Planck Society;

Albrecht,  Marcus W.
Max Planck Society;

/persons/resource/persons50111

Borodina,  Tatjana
Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50461

Parkhomchuk,  Dmitri
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

journal.pone.0005548.pdf
(Any fulltext), 576KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schweiger, M. R., Kerick, M., Timmermann, B., Albrecht, M. W., Borodina, T., Parkhomchuk, D., et al. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS ONE, 4(5), e5548-e5548. doi:10.1371/journal.pone.0005548.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7D92-D
Abstract
Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies. Methodology/Principal Findings Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples. Conclusions/Significance The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.