de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by Pyrosequencing.

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50386

Klopocki,  E.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kramer, M., Backhaus, O., Rosenstiel, P., Horn, D., Klopocki, E., Birkenmeier, G., et al. (2010). Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by Pyrosequencing. Gene, 455(1-2), 1-7. doi:10.1016/j.gene.2010.01.005.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-7B35-2
Abstract
The paralogous genes RABL2A (chr2) and RABL2B (chr22) emerged by duplication of a single gene in the human-chimpanzee ancestor and share a high degree of sequence similarity. In Phelan-McDermid-Syndrome microdeletions of 22q13 often also affecting RABL2B are of clinical importance but their incidence is still unknown. We analyzed a German population (190 individuals) for such aneuploidies and the paralogs' expression in cell lines by RABL2 paralogous sequence quantification. For determination of the genomic and transcriptional ratios of RABL2A and RABL2B a Pyrosequencing protocol was introduced as a high-throughput method. During PCR the 3' end of the biotinylated strand is engineered by a backfolding oligonucleotide to hybridize in the Pyrosequencing reaction to an internal site near the sequence to be analyzed. In human samples no deviations of the euploid genomic state could be detected indicating that 22q13 microdeletions involving RABL2B are rare. However, despite equal gene dosage a preferential expression of RABL2B in human tissues and lymphoblastoid cell lines was detected which is most pronounced in brain and placenta. This renders a complete functional complementation of one paralog by the respective other unlikely and hints to a functional and clinical importance, in particular with respect to the 22q13 chromosomal deletion syndrome. Remarkably and in contrast to human, expression levels of the two paralogs in a chimpanzee cell line are equal. This finding is discussed in view of the relocation of RABL2A from its ancestral telomeric to its pericentromeric location in human.