de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Model-based gene set analysis for Bioconductor

MPG-Autoren

Bauer,  S.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50496

Robinson,  P. N.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bauer, S., Robinson, P. N., & Gagneur, J. (2011). Model-based gene set analysis for Bioconductor. Bioinformatics, 27(13), 1882-3. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21561920 http://bioinformatics.oxfordjournals.org/content/27/13/1882.full.pdf.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-7838-1
Zusammenfassung
Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene set analysis (MGSA), that substantially reduces the number of redundant categories returned by the gene-category analysis. In this work, we present the Bioconductor package mgsa, which makes the MGSA algorithm available to users of the R language. Our package provides a simple and flexible application programming interface for applying the approach. AVAILABILITY: The mgsa package has been made available as part of Bioconductor 2.8. It is released under the conditions of the Artistic license 2.0. CONTACT: peter.robinson@charite.de; julien.gagneur@embl.de.