de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimizing transition states via kernel-based machine learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45970

Hansen,  Katja
Institute for Pure and Applied Mathematics, University of California, Los Angeles,;
Theory, Fritz Haber Institute, Max Planck Society;

Rupp,  Matthias
Institute for Pure and Applied Mathematics, University of California, Los Angeles,;
Theory, Fritz Haber Institute, Max Planck Society;

Müller,  Klaus-Robert
Institute for Pure and Applied Mathematics, University of California, Los Angeles,;
Theory, Fritz Haber Institute, Max Planck Society;
Department of Brain and Cognitive Engineering, Korea University;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pozun, Z. D., Hansen, K., Sheppard, D., Rupp, M., Müller, K.-R., & Henkelman, G. (2012). Optimizing transition states via kernel-based machine learning. The Journal of Chemical Physics, 136(17): 174101. doi:10.1063/1.4707167.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-76E1-6
Zusammenfassung
We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machinelearned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.