de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21916

Nilius,  Niklas
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21940

Pan,  Yi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21903

Myrach,  Philipp
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PhysRevB.86.205410.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nilius, N., Benedetti, S., Pan, Y., Myrach, P., Noguera, C., Giordano, L., et al. (2012). Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Physical Review B, 86(20): 205410. doi:10.1103/PhysRevB.86.205410.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-7639-F
Zusammenfassung
Using scanning tunneling microscopy and density functional theory (DFT), we have analyzed the local electronic properties of (111)-oriented MgO nanoislands on Au(111). Conductance and barrier-height measurements revealed substantial modulations in the electronic structure and electrostatic potential across the islands, with particularly high and low values for band onsets and surface potential occurring at the perimeter and in the island center, respectively. DFT calculations showed that MgO(111) monolayer structures exhibit a strongly reduced distance between the Mgδ+ and Oδ− plane as compared to bulk MgO, which in turn suppresses the polar character of the film. The spatial modulations in the electronic properties originate from gradual changes of the interface registry when approaching the island edges, driven by a small mismatch between the Au(111) and MgO(111) lattices. At the periphery of the islands, additional effects such as band shifts and low-lying electronic states are observed, which arise from the interplay of residual edge polarity and unsaturated chemical bonds. We expect that the peculiar edge properties of MgO(111) islands are decisive for the chemical behavior of the nanostructures.