English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Estimation of missing cone data in three-dimensional electron microscopy

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barth, M., Bryan, R. K., Hegerl, R., & Baumeister, W. (1988). Estimation of missing cone data in three-dimensional electron microscopy. Scanning Microscopy, Suppl., no., 2, 277-284.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-74AC-A
Abstract
The range of tilt angles for which projected images of two-dimensionally periodic specimens can be obtained in electron microscopy is limited both by technical aspects such as goniometer design, and by the more fundamental limitation of object thickness. The lack of a full set of projections causes a missing cone in the reciprocal space data for the object, which will give an anisotropic resolution in a three-dimensional reconstruction and may cause the quality to be impaired by spurious features. The problem is governed by a linear operator which maps the three-dimensional object onto the set of projections. The eigenvalue spectrum of this operator is determined by the range of tilt angles and the spatial extent of the object. With restricted angle data some of the eigenvalues are extremely small, the problem is 'ill-conditioned' or sensitive to small perturbations such as noise, and it is necessary to regularize the solution. The authors applied two methods of band-limited extrapolation and inference on electron microscope data. Alternating projections onto convex sets regularized by a regularization parameter and a least squares estimation regularized by the Shannon entropy functional yield similar results if a close object extent constraint is available. The criterion of maximum entropy, however, allows relaxation of this constraint. (34 References).