de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (ricm)

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gritsch, S., Neumaier, K., Schmitt, L., & Tampe, R. (1995). Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (ricm). Biosensors & Bioelectronics, 10(9-10), 805-812.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-735B-8
Zusammenfassung
In molecular biology, biotechnology, and protein-engineering, the expression of histidine fusion proteins is a very powerful technique for the identification and one-step purification based on the interaction of the histidine stretch with immobilized metal complexes. By synthesis of a novel class of chelator lipids, this technique was combined with the concept of self-assembly leading to interfaces for immobilization and orientation of histidine-ragged biomolecules (Schmitt et al., 1994). Here, these chelator lipid layers were transferred onto solid substrate by vesicle fusion and Langmuir-Blodgett-techniques. Specific binding of a peptide containing an oligohistidine sequence to these functionalized interfaces was demonstrated by reflection interference contrast microscopy (RICM). Due to the phase separation behaviour of lipid mixtures, the chelator lipid interface could be further structured in two dimensions. Binding and organization of histidine-tagged molecules at these two-dimensional recognition arrays was imaged by RICM with a layer thickness resolution of 0.2 nm, and 0.5 mu m laterally. Specific docking can be triggered by adding nickel ions and disrupted by EDTA. This concept opens up possibilities for reversible immobilization, enrichment and organization of histidine fusion proteins at interfaces and their application in biosensing. [References: 11]