de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atp-lipids - protein anchor and energy source in two dimensions

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmitt, L., & Tampe, R. (1996). Atp-lipids - protein anchor and energy source in two dimensions. Journal of the American Chemical Society, 118(24), 5532-5543.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-72E2-D
Abstract
The ubiquitous function of ATP as energy equivalent in nature has resulted in a common folding pattern of ATP-binding proteins. Their binding pocket tolerates modifications of the adenine ring to some extend, whereas those of the triphosphate group strongly affect the binding affinity. In consequence, immobilized C8- and N-6- modified ATP analogues are frequently used for affinity purification of ATPases or kinases. To combine this unique recognition principle with the fascinating properties of self-assembly, we have synthesized a novel class of hydrolyzable and nonhydrolyzable ATP-lipids where the nucleotides are covalently attached via C8- or N-6-position of the adenine ring to a synthetic lipid. These ATP-lipids were characterized by various enzyme assays in micellar solution, resulting in ATPase and competition activities that are comparable to their free counterparts. The specific docking of actin as a model of an ATP-binding protein to ATP-lipid monolayers was followed by film balance technique and epifluorescence microscopy. Based on this specific interaction, actin-supported membranes were generated to study shape transitions of vesicular systems. Due to the coupling of actin to ATP-lipid bilayers drastic changes in the viscoelastic properties and shape transitions were observed by phase contrast microscopy. These results underline the properties of these novel ATP-lipids as protein anchor or energy source in two dimensions. They can be applied either to form phantom cells, actin-supported membranes or to orient and crystallize ATP-binding proteins at lipid interfaces. [References: 81]