de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grimm, R., Typke, D., Bärmann, M., & Baumeister, W. (1996). Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy, 63(3-4), 169-179.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-72DE-A
Zusammenfassung
Using electron microscopy, the thickness of ice-embedded vesicles is estimated examining tilted and untilted views and assuming an ellipsoidal shape of the vesicles that appear to be circular in the untilted view. Another thickness measure is obtained from the ratio of the unfiltered and zero-loss-filtered image intensities of the vesicle. From these two measure ments, the mean free path Lambda for inelastic scattering of electrons in ice is calculated as 203 +/- 33 nm for 120 kV acceleration voltage. It is found that vesicles in thin ice films (less than or equal to 1.5 Lambda) significantly protrude out of the ice film. Due to surface tension the shape becomes an oblate ellipsoid. In holes covered with a thick ice film (greater than or equal to 3 Lambda) and strong thickness gradients, vesicles are predominantly found in regions where the ice thickness is appropriate for their size. Also, a way of imaging the most probable loss under low-dose conditions involving thickness measurement is proposed. Even at large ice thicknesses zero-loss filtering always gives better image contrast. Most probable loss imaging can only help where there is no intensity in the zero-loss image, at very large thicknesses (Lambda>8). [References: 13]