English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A critical role for tapasin in the assembly and function of multimeric mhc class i-tap complexes

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ortmann, B., Copeman, J., Lehner, P. J., Sadasivan, B., Herberg, J. A., Grandea, A. G., et al. (1997). A critical role for tapasin in the assembly and function of multimeric mhc class i-tap complexes. Science, 277(5330), 1306-1309. doi:10.1126/science.277.5330.1306.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7282-5
Abstract
Newly assembled major histocompatibility complex (MHC) class I molecules, together with the endoplasmic reticulum chaperone calreticulin, interact with the transporter associated with antigen processing (TAP) through a molecule called tapasin, The molecular cloning of tapasin revealed it to be a transmembrane glycoprotein encoded by an MHC-linked gene. It is a member of the immunoglobulin superfamily with a probable cytoplasmic endoplasmic reticulum retention signal. Up to four MHC class I-tapasin complexes were found to bind to each TAP molecule. Expression of tapasin in a negative mutant human cell line (220) restored class I-TAP association and normal class I cell surface expression. Tapasin expression also corrected the defective recognition of virus-infected 220 cells by class I-restricted cytotoxic T cells, establishing a critical functional role for tapasin in MHC class I-restricted antigen processing. [References: 38]